Run @ Rate / OEE Analysis

Overall Equipment Effectiveness (OEE)

Shift Length	Hours	0	Minutes		
Breaks	Breaks		Minutes Each		Minutes Total
Lunch Break		Breaks		Minutes Each	
Down Time		Minutes			
Ideal Run Rate		Pieces per Minute			
Total Pieces					
Reject Pieces					

Planned Production Time	Shift Length - Breaks		Minutes
Operating Time	Planned Production Time - Down Time		Minutes
Good Pieces	Total Pieces - Reject Pieces	0	Minutes

Availability	Operating Time / Planned Production Time	
Performance	(Total Pieces / Operating Time) / Ideal Run Rate	
Quality	Good Pieces / Total Pieces	
Overall OEE	Availability \times Performance \times Quality	

PASS	ACCEPT	OPTIONAL		
REJECT	REJECT	REQUIRED		

The Formulas
As described in World Class OEE, the OEE calculation is bas
Availability
Availability takes into account Down Time Loss, ar
Availability = Operating Time / Planned Productic Performance
Performance takes into account Speed Loss, and is Performance = Ideal Cycle Time / (Operating Tin Ideal Cycle Time is the minimum cycle time that you

Since Run Rate is the reciprocal of Cycle Time, Perfc
Performance $=($ Total Pieces $/$ Operating Time) $/$
Performance is capped at 100%, to ensure that if ar Quality
Quality takes into account Quality Loss, and is calc Quality = Good Pieces / Total Pieces OEE

OEE takes into account all three OEE Factors, and OEE $=$ Availability \times Performance \times Quality
It is very important to recognize that improving OEE

OEE Factor Shift 1	Shift 2			
Availabi lity	90.00%	95.00%		
Perform ance	95.00%	95.00%		
Quality	99.50%	96.00%		
OEE	85.10%	86.60%		

Superficially, it may appear that the second shift is । The beauty of OEE is not that it gives you one magic

Example OEE Calculation

The table below contains hypothetical shift data, to

Item	Data			
Shift Length	8 hours $=480$ min.			
Short Breaks	2 @ 15 min. $=$ 30 min.			
Meal Break	1 @ 30 min. $=$ 30 min.			
Down Time	47 minutes			
Ideal Run Rate	60 pieces per minute			

	$=$			
	$18,848 /$			
	19,271			
pieces				
	$=$			
	0.9780			
	or			
	97.80%			
OEE				
	$=$			
	$0.8881 \times$			
	0.8611 x			
	0.9780			
	$=$			
	0.7479			
	or			
	74.79%			

